Skip to contents

These functions can be used to count resistant/susceptible microbial isolates. All functions support quasiquotation with pipes, can be used in summarise() from the dplyr package and also support grouped variables, see Examples.

count_resistant() should be used to count resistant isolates, count_susceptible() should be used to count susceptible isolates.

Usage

count_resistant(..., only_all_tested = FALSE)

count_susceptible(..., only_all_tested = FALSE)

count_S(..., only_all_tested = FALSE)

count_SI(..., only_all_tested = FALSE)

count_I(..., only_all_tested = FALSE)

count_IR(..., only_all_tested = FALSE)

count_R(..., only_all_tested = FALSE)

count_all(..., only_all_tested = FALSE)

n_sir(..., only_all_tested = FALSE)

count_df(data, translate_ab = "name", language = get_AMR_locale(),
  combine_SI = TRUE)

Arguments

...

One or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with as.sir() if needed.

only_all_tested

(for combination therapies, i.e. using more than one variable for ...): a logical to indicate that isolates must be tested for all antimicrobials, see section Combination Therapy below.

data

A data.frame containing columns with class sir (see as.sir()).

translate_ab

A column name of the antimicrobials data set to translate the antibiotic abbreviations to, using ab_property().

language

Language of the returned text - the default is the current system language (see get_AMR_locale()) and can also be set with the package option AMR_locale. Use language = NULL or language = "" to prevent translation.

combine_SI

A logical to indicate whether all values of S, SDD, and I must be merged into one, so the output only consists of S+SDD+I vs. R (susceptible vs. resistant) - the default is TRUE.

Value

An integer

Details

These functions are meant to count isolates. Use the resistance()/susceptibility() functions to calculate microbial resistance/susceptibility.

The function count_resistant() is equal to the function count_R(). The function count_susceptible() is equal to the function count_SI().

The function n_sir() is an alias of count_all(). They can be used to count all available isolates, i.e. where all input antimicrobials have an available result (S, I or R). Their use is equal to n_distinct(). Their function is equal to count_susceptible(...) + count_resistant(...).

The function count_df() takes any variable from data that has an sir class (created with as.sir()) and counts the number of S's, I's and R's. It also supports grouped variables. The function sir_df() works exactly like count_df(), but adds the percentage of S, I and R.

Interpretation of SIR

In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R (https://www.eucast.org/newsiandr).

This AMR package follows insight; use susceptibility() (equal to proportion_SI()) to determine antimicrobial susceptibility and count_susceptible() (equal to count_SI()) to count susceptible isolates.

Combination Therapy

When using more than one variable for ... (= combination therapy), use only_all_tested to only count isolates that are tested for all antimicrobials/variables that you test them for. See this example for two antimicrobials, Drug A and Drug B, about how susceptibility() works to calculate the %SI:

--------------------------------------------------------------------
                    only_all_tested = FALSE  only_all_tested = TRUE
                    -----------------------  -----------------------
 Drug A    Drug B   considered   considered  considered   considered
                    susceptible    tested    susceptible    tested
--------  --------  -----------  ----------  -----------  ----------
 S or I    S or I        X            X           X            X
   R       S or I        X            X           X            X
  <NA>     S or I        X            X           -            -
 S or I      R           X            X           X            X
   R         R           -            X           -            X
  <NA>       R           -            -           -            -
 S or I     <NA>         X            X           -            -
   R        <NA>         -            -           -            -
  <NA>      <NA>         -            -           -            -
--------------------------------------------------------------------

Please note that, in combination therapies, for only_all_tested = TRUE applies that:

    count_S()    +   count_I()    +   count_R()    = count_all()
  proportion_S() + proportion_I() + proportion_R() = 1

and that, in combination therapies, for only_all_tested = FALSE applies that:

    count_S()    +   count_I()    +   count_R()    >= count_all()
  proportion_S() + proportion_I() + proportion_R() >= 1

Using only_all_tested has no impact when only using one antibiotic as input.

See also

proportion_* to calculate microbial resistance and susceptibility.

Examples

# example_isolates is a data set available in the AMR package.
# run ?example_isolates for more info.

# base R ------------------------------------------------------------
count_resistant(example_isolates$AMX) # counts "R"
#> [1] 804
count_susceptible(example_isolates$AMX) # counts "S" and "I"
#> [1] 546
count_all(example_isolates$AMX) # counts "S", "I" and "R"
#> [1] 1350

# be more specific
count_S(example_isolates$AMX)
#> [1] 543
count_SI(example_isolates$AMX)
#> [1] 546
count_I(example_isolates$AMX)
#> [1] 3
count_IR(example_isolates$AMX)
#> [1] 807
count_R(example_isolates$AMX)
#> [1] 804

# Count all available isolates
count_all(example_isolates$AMX)
#> [1] 1350
n_sir(example_isolates$AMX)
#> [1] 1350

# n_sir() is an alias of count_all().
# Since it counts all available isolates, you can
# calculate back to count e.g. susceptible isolates.
# These results are the same:
count_susceptible(example_isolates$AMX)
#> [1] 546
susceptibility(example_isolates$AMX) * n_sir(example_isolates$AMX)
#> [1] 546

# dplyr -------------------------------------------------------------
# \donttest{
if (require("dplyr")) {
  example_isolates %>%
    group_by(ward) %>%
    summarise(
      R = count_R(CIP),
      I = count_I(CIP),
      S = count_S(CIP),
      n1 = count_all(CIP), # the actual total; sum of all three
      n2 = n_sir(CIP), # same - analogous to n_distinct
      total = n()
    ) # NOT the number of tested isolates!

  # Number of available isolates for a whole antibiotic class
  # (i.e., in this data set columns GEN, TOB, AMK, KAN)
  example_isolates %>%
    group_by(ward) %>%
    summarise(across(aminoglycosides(), n_sir))

  # Count co-resistance between amoxicillin/clav acid and gentamicin,
  # so we can see that combination therapy does a lot more than mono therapy.
  # Please mind that `susceptibility()` calculates percentages right away instead.
  example_isolates %>% count_susceptible(AMC) # 1433
  example_isolates %>% count_all(AMC) # 1879

  example_isolates %>% count_susceptible(GEN) # 1399
  example_isolates %>% count_all(GEN) # 1855

  example_isolates %>% count_susceptible(AMC, GEN) # 1764
  example_isolates %>% count_all(AMC, GEN) # 1936

  # Get number of S+I vs. R immediately of selected columns
  example_isolates %>%
    select(AMX, CIP) %>%
    count_df(translate = FALSE)

  # It also supports grouping variables
  example_isolates %>%
    select(ward, AMX, CIP) %>%
    group_by(ward) %>%
    count_df(translate = FALSE)
}
#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
#>   (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> # A tibble: 12 × 4
#>    ward       antibiotic interpretation value
#>    <chr>      <chr>      <ord>          <int>
#>  1 Clinical   AMX        SI               357
#>  2 Clinical   AMX        R                487
#>  3 Clinical   CIP        SI               741
#>  4 Clinical   CIP        R                128
#>  5 ICU        AMX        SI               158
#>  6 ICU        AMX        R                270
#>  7 ICU        CIP        SI               362
#>  8 ICU        CIP        R                 85
#>  9 Outpatient AMX        SI                31
#> 10 Outpatient AMX        R                 47
#> 11 Outpatient CIP        SI                78
#> 12 Outpatient CIP        R                 15
# }